If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x+x^2=16
We move all terms to the left:
14x+x^2-(16)=0
a = 1; b = 14; c = -16;
Δ = b2-4ac
Δ = 142-4·1·(-16)
Δ = 260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{260}=\sqrt{4*65}=\sqrt{4}*\sqrt{65}=2\sqrt{65}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{65}}{2*1}=\frac{-14-2\sqrt{65}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{65}}{2*1}=\frac{-14+2\sqrt{65}}{2} $
| -3a-7=-19 | | -3y+(-6)=3 | | 19+4=9x-7x-x | | 10v/4=3v+34 | | -3y(-4)=34 | | 4c=3(2-5)+7 | | 6a-7=65 | | 1/2(180-x)=2(90-x)-27 | | 5e+2=2e+26 | | R^2+r5=24 | | 16(4)+6+10x=180 | | 16(4)+6=10x | | 1.2m+12=12 | | 8=n-20 | | 6(x+1)(x+1)=13x-12 | | 10x2+5x-20=0 | | 4x+13=1/2(86-74) | | 12y+8-2y+6=40+6+8 | | x+-14=-19 | | 3(2i-4)+2=6-4(2i-3) | | 360=10x+x^2+(5x+36) | | Y=-1.6x+16 | | 3/4t-2=1/4 | | Y=-45x+180 | | 0=2x^2+8x | | 0.4x+1.2=3.2 | | 8-5x=-3 | | 3^2x-6=5.3^x | | a=5(10)+3 | | 4x+(14x-10+(8x+5=180 | | x(5+10)=30 | | 4+3(7+5(m+2))=10 |